如何使用 Python 的 Scikitlearn 库进行机器学习算法评估?

如何使用 Python 的 Scikitlearn 库进行机器学习算法评估?

步骤:

  1. 导入必要的库
import sklearn.model_selection as train_test_split
  1. 加载数据
X_train, X_test, y_train, y_test = train_test_split.train_test_split(X_train, y_train, test_size=0.2)
  1. 创建评估指标
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, y_pred)
  1. 训练模型
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
  1. 评估模型
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

示例代码:

import sklearn.model_selection as train_test_split
import numpy as np

# 加载数据
X_train = np.load('train_data.npy')
y_train = np.load('train_labels.npy')

# 创建评估指标
accuracy = train_test_split.accuracy_score

# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 评估模型
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

# 打印结果
print(f"Accuracy: {accuracy}")

注意:

  • train_size 参数控制测试集的大小。
  • accuracy_score 函数返回模型在测试集上的准确率。
  • 可以使用其他评估指标,例如 precisionrecallF1-score
相似内容
更多>